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Abstract

RISC Zero offers an open source virtual machine coupled with a zero-knowledge
proof system. Together this is referred to as a zero-knowledge virtual machine, or
zkVM. When a RISC-V binary executes inside the zkVM, the output is paired with a
computational receipt, which serves as a zero-knowledge argument of computational
integrity. The RISC Zero proof system implements a zk-STARK instantiated using
the FRI protocol, DEEP-ALI, and an HMAC-SHA-256 based PRF. In this paper,
we formally articulate the RISC Zero Proof System with as few technical barriers
to understanding as possible, including a detailed construction of a RISC Zero
cryptographic seal.
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1 Introduction

1.1 Verifiable Computing

The era of verifiable computing is upon us: we now live in a world where the
actions of untrusted parties in distributed systems can be authenticated as trust-
worthy quickly and easily, using arguments of computational integrity [Ben+18].
This technology is the result of decades of incremental progress in the field of zero-
knowledge cryptography and interactive proofs [GMR85; AS98; BCS16]. Over the
past few years, it has become practical and impactful to implement in real-world ap-
plications [Ben+14; Sta21]. Initial applications showed zero-knowledge proofs to be
a powerful tool for ensuring privacy in blockchains, and the technology has evolved
to the point that arguments of computational integrity are staged to become key
infrastructure to the digital world. We expect that verifiable computation is not
only the answer to the question of blockchain scaling, but also to fixing problems
like Twitter bots and telephone spam. In a world where trust is becoming more
and more scarce, verifiable computing provides a path forward.

Thousands upon thousands of developers are eager to start writing verifiable soft-
ware. But current systems for writing verifiable software require developers to learn
brand new languages with various limitations and challenges. In order to make ver-
ifiable software development possible in languages like Rust and C++, RISC Zero
has built a mechanism for demonstrating the integrity of any RISC-V
computation.

1.2 Verifiable RISC-V

When a RISC-V binary executes in the RISC Zero zkVM, the output is paired with
a computational receipt. The receipt contains a cryptographic seal, which serves as
a zero-knowledge argument of computational integrity. By offering computational
receipts for any code that will compile to RISC-V, our zkVM offers a platform to
build truly trustable software, where skeptical third parties can verify authenticity
in milliseconds. The idea of “running a verifier” to assure the integrity of massive
computations is a novel addition to the world of digital security.

1.3 A Formally Verified Verifier

Formal verification is a process of translating code into a model that can be rea-
soned about with mathmatical tools to ensure properties relevant to security and
correctness. Formal verification is used to ensure that a piece of code is actually
doing what it’s supposed to be doing. To ensure that the RISC Zero verifier (which
checks the receipts) is functioning without security bugs, we’re working on a formal
verification of the verifier implementation. This formal verification work is available
at https://www.github.com/risc0/risc0-lean4.
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1.4 The RISC Zero Argument System

RISC Zero’s argument system is based on [Ben+18]; the seal on a RISC Zero
receipt is a zk-STARK. The arithmetization scheme is a randomized AIR with
preprocessing [Azt20]. The randomized preprocessing constructs constraints for
a PLONK-based memory permutation argument and a PLOOKUP-based range-
check [GWC19; GW20]. After preprocessing, the STARK is instantiated using the
DEEP-ALI protocol and the FRI protocol [Ben+19; Ben+17].

1.5 Paper Organization

In this paper, we specify the RISC Zero protocol and analyze its knowledge sound-
ness. The paper is organized as follows:

In Section 2, we introduce some key ideas and background. In particular, we intro-
duce the following idea: An assertion of computational integrity can be viewed as
an assertion that an execution trace satisfies a set of constraints.

In Section 3, we present the interactive version of the protocol and analyze its
soundness in the Interactive Oracle Proof model [BCS16].

2 Background

The argument system behind RISC Zero’s receipts is built in terms of an execution
trace and a number of constraints that enforce checks of computational integrity.
We start by introducing those terms as they’re used in the context of the RISC Zero
protocol.

2.1 The Columns of the Execution Trace

When a piece of code runs on a machine, the execution trace (or simply, the trace) is
a record of the full state of the machine at each clock cycle of the computation. It’s
typical to write an execution trace as a rectangular array, where each row shows the
complete state of the machine at a given moment in time, and each column shows a
temporal record of some particular aspect of the computation (say, the value stored
in a particular RISC-V register) at each clock cycle.

The columns of the RISC Zero execution trace are categorized as follows:

Control Columns - Public The data in these columns describe the RISC-V ar-
chitecture, and various control signals that define the stage of execution and
therefore what constraints are applied.1

Data Columns - Private The data in these columns represents the running state
of the processor and memory. In order to efficiently check the integrity of
RISC-V memory operations, each register associated with RISC-V memory

1In the source code, the Control Columns are referred to as “Code” Columns; we intend to
update the terminology to align with this document.
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operations has two associated columns: one in the original execution order
and the second sorted first by memory location and then by clock-cycle.

Accumulator Columns - Private We use accumulators to instantiate grand-
product constraints for a PLONK-based permutation check and a PLOOKUP-
based range-check. The Accumulator Columns contain the associated accumu-
lator data. The entries in the Accumulator Columns and the associated con-
straints are constructed during the randomized preprocessing phase [GWC19;
GW20; Azt20].

2.2 Enforcing Computational Integrity via Constraints

An assertion of computational integrity can be re-framed as an assertion that an
execution trace satisfies a certain set of constraints. These constraints enforce that
the zkVM execution is consistent with the RISC-V ISA. Each constraint is a low-
degree polynomial relation over the constrained values; the execution trace is valid
if and only if each constraint evaluates to 0.

Example 1. The constraint (k)(k − 1) = 0 enforces that k is either 0 or 1.
Example 2. The constraint j − 2k = 0 enforces that j = 2k.

Enforcing computational integrity of our implementation of the RISC-V instruction
set architecture involves thousands of constraints, each of which is expressed as a
multi-variable polynomial.2 At a high level, the constraints enforce that each of the
following phases of the zkVM operation was executed as claimed:

• Init: Initialization of all registers to 0

• Setup: Prepare to load ELF file

• Load: Loading the RISC-V binary into memory

• Reset: Ends the loading phase and prepares for execution.

• Body: Main execution phase. This is where user-defined code is executed.

• RamFini: Generates the memory-based grand product accumulation values for
our memory permutation[GWC19]

• BytesFini: Generates the bytes-based grand product accumulation values for
PLOOKUP[GW20]

Together, these constraints enforce that the purported output of the computation
agrees with the expected rv32im [ISA19] execution.

2.3 Arguments and Proofs of Knowledge

The seal on the RISC Zero receipt is a STARK – a scalable, transparent argument
of knowledge [Ben+18]. An argument of knowledge allows a Prover to justify an
“assertion of knowledge.” More formally, the Prover asserts knowledge of a witness

2Inputs to these polynomials may include register-values at various clock-cycles, including pre-
vious cycles.
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𝕨 that satisfies some constraints 𝕩. In the case of an assertion of computational
integrity, the witness is the execution trace and the constraints are the various rules
that define computational integrity.

In Section 3.3, we present the protocol as an Interactive Oracle Proof (IOP) [BCS16].
IOPs involve a series of interactions between a Prover and a Verifier, where the
Prover’s messages depend on randomness supplied by the Verifier at various points
throughout the protocol. The IOP protocol is a theoretical model; in practice, the
zkVM uses a non-interactive version of this protocol where the Verifier participation
is replaced by HMAC-SHA-256 through the Fiat-Shamir transform.

In the context of the IOP protocol, the seal constitutes a proof of knowledge. In
code, the proof becomes an argument.3 More specifically, the seal is a STARK. The
Fiat-Shamir Heuristic allows us to derive security results for our STARK based on
soundness analysis of the IOP protocol [FS87].

3 The RISC Zero IOP Protocol

In this section, we present the interactive version of the RISC Zero protocol and
analyze the knowledge soundness of the protocol in the context of the IOP model
[BCS16].

3.1 Overview of the Protocol

In an interactive oracle proof, a Prover convinces a skeptical Verifier of some asser-
tion via a series of interactions. In each round, the Prover commits to evaluations
of one or more functions over a domain known to both parties. The Verifier may
query these Prover messages without reading them in full. The IOP model idealizes
these queries using the concept of oracle access. This theoretical model allows us to
prove soundness of our protocol without reference to any cryptographic primitives.
The seal on a RISC Zero receipt is the transcript of the interactive protocol, with a
random oracle as the verifier. When the zkVM finishes execution of a method, the
resultant seal serves as a zero-knowledge proof of computational integrity, linking a
cryptographic imageID (which identifies the RISC-V binary file that was executed)
to the asserted code output in a way that third-parties can quickly verify.

The protocol consists of a transparent set-up phase, a randomized preprocessing
phase, and a main phase. The set-up phase establishes certain protocol parameters
known to both the Prover and the Verifier, including the number and length of
the trace columns as well as a full enumeration of the constraints that are to be
enforced.

3.1.1 Set-up Phase

The set-up phase only needs to be done once for each program, and the public pa-
rameters can be used to generate an arbitrary number of execution proofs. These

3The argument depends on the security of HMAC-SHA-256 as a random oracle whereas the
proof has no cryptographic assumptions.
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public parameters include specification of the circuit and the constraints for the
zkVM, a cryptographic identifier for the program to be executed, as well as vari-
ous parameters that specify the handling of hashing, DEEP-ALI and FRI. These
parameters can either be distributed to provers and verifiers via a trusted channel,
or calculated independently from the program definition (e.g. source code). This
ability to recalculate the parameters independently, using only public information,
is what defines the “transparency” property.

3.1.2 Randomized Preprocessing

With the set-up complete, the Prover runs the program, which generates the control
columns and the data columns, and then begins the randomized preprocessing,
which constructs the accumulators for memory and for bytes. The Prover sends two
trace commitments; one for the control columns and one for the data columns (see
Section 2.1). To generate the trace commitments, the trace columns are encoded
into trace blocks using Reed-Solomon encoding, and the trace blocks are committed
to Merkle trees. We write 𝕨control and 𝕨data to represent the witnesses, and we write
Com(𝕨control) and Com(𝕨data) to represent the associated commitments. After these
first two commitments, the Prover uses verifier-randomness to construct the accum
blocks and sends a third commitment Com(𝕨accum), which allows for a permutation
argument and a lookup argument.4

3.1.3 Main Phase

The main phase consists of a standard AIR-FRI protocol, using DEEP-ALI[Ben+19]
and the batched FRI protocol[Ben+20], as in [Sta21] and [Tea22].

The Prover uses the constraints and the execution trace to generate the validity
polynomial fvalidity, uses fvalidity to construct the validity witness 𝕨validity, and sends
Com(𝕨validity) to the Verifier. The Verifier responds with a random z ∈ 𝔽q, the
Prover evaluates fvalidity at z and uses the DEEP quotienting technique to construct
the DEEPAnswerSequence.

3.2 IOP Definitions

Recall the definition of interactive oracle proof from [BCS16]. In the IOP model,
our protocol satisfies the definition of STIK from [Ben+18].5

Building on the definitions and notation of an AIR from Section 5 of [Sta21], as
well as the notion of a randomized AIR with preprocessing from [Azt20], our IOP
proves knowledge of a witness that satisfies a RAP[Azt20] (randomized AIR with
preprocessing) instance defined as

ARAP = (𝔽,𝕂, e,wRAP, nσmem , nσbytes
, h, d, s, ω, β, l,Cset)

where
4Because we reveal many branches from each tree, we commit Merkle caps rather than Merkle

roots. See Appendix B and [CY21] for more details.
5The difference in acronyms between STIK and STARK is a substitution of “IOP” for “ARgu-

ment.”
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• 𝔽 = 𝔽231−227+1, known commonly as the Baby Bear field.

• 𝕂 is a degree e = 4 extension of 𝔽.

• wRAP is the number of columns in the RAP witness. We write wRAP = wcontrol+
wdata + waccum where

– wcontrol is the number of control columns,

– wdata is the number of data columns, and

– waccum = 2e · nσmem + 2e · nσbytes
is the number of accumulator columns

generated in the randomized preprocessing.6

• nσmem is the number of duplicated data columns in the witness that appear
due to the permutation from tracetime to tracemem.

• nσbytes
is the number of columns in the witness that appear due to the bytes-

lookup in our PLOOKUP implementation.

• 2h is the size of the trace domain, H (i.e., the length of the columns).

• d is the maximum degree of the rule-checking polynomials.

• ω ∈ 𝔽 has multiplicative order e · 2h and β ∈ 𝔽 is non-zero. We define the
commitment domain D as the coset βD0 where D0 ⊆ 𝔽p is generated by ω, and

we define the trace domain H as the set generated by ω
1
ρ , where ρ is defined

below.

• l is the set of indices for the tapset7.

• Cset is the set of constraints which enforce the computational integrity checks.
Each constraint, Ci ∈ 𝔽≤d[Y] is a multi-variate polynomial over the tapset
variables, of total degree at most d, called the ith rule-checking polynomial.
Each constraint is enforced over the entire trace domain.

• s is the number of RAP constraints.

In addition to the inputs to the RAP instance listed above, the IOP also uses the
following auxiliary inputs, denoted aux = (D, k, auxFRI).

• D is the zk commitment domain8, which is a non-trivial coset9 of a multiplica-
tive subgroup D0 where H ⊆ D0 ⊆ 𝔽.

• 2k is the size of the zk commitment domain, D. We define the rate of the IOP

by ρ := 2h

2k
.

6These accumulator columns are used for a PLONK-based permutation check and a
PLOOKUP-based range check. In our system, nσmem = 5 and nσbytes = 15

7A tap is a reference to an entry in the trace; the constraints are expressed as a function of
various taps. For more details on taps, see Appendix A.5.2. Note that ethSTARK uses the term
mask where we use tapset.

8ethSTARK calls this the evaluation domain.
9Using D0 as a commitment domain would introduce divide-by-zero issues and would mean

queries might reveal information about the execution trace. The coset D doesn’t intersect D0,
which is important for zero-knowledge purposes.
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• auxFRI is defined as (⃗t, nqueries, dfinal) where

– t⃗ = (t1, ..., tr) is a vector describing the the FRI-folding factor for each
round of the COMMIT phase. In our system, ti = 16 for all i.

– nqueries = 50 is the number of FRI queries, and

– dfinal = 256 is the degree at which we terminate our FRI algorithm.

3.3 IOP Protocol Specification

After a transparent set-up, the IOP consists of three components: a randomized
preprocessing step, the DEEP-ALI protocol, and the FRI protocol.

3.3.1 Randomized Preprocessing

1. Prover generates IOP witness𝕨control∪𝕨data and sends commitments Com(𝕨control)
and Com(𝕨data).

10

2. Verifier samples nσ = nσmem + nσbytes
elements of 𝕂, the randomness used to

generate the Accumulator Columns.

3. Prover generates witness 𝕨accum and sends Com(𝕨accum).

𝕨RAP = 𝕨control ∪𝕨data ∪𝕨accum is a witness that satisfies the RAP instance:

ARAP = (𝔽,𝕂, e,wRAP, nσmem , nσbytes
, h, d, s, ω, β, l,Cset)

The rest of the protocol implements DEEP-ALI + Batched FRI as in [Sta21],
[Ben+19], [Ben+20], using auxiliary IOP parameters aux = (D, k, auxFRI).

11

3.3.2 Sub-Protocol: DEEP-ALI

4. Verifier samples αconstraints ∈ 𝕂, the randomness used in DEEP-ALI con-
straint batching.12

5. Prover generates 𝕨validity and sends Com(𝕨validity).
This serves as a commitment to fvalidity, defined as follows:

fvalidity(x) =

|Cset|−1∑
i=0

αi
constraints · Ci(P0(x), . . . , PwRAP−1)

Z(x)

where Pj are the interpolations of the columns of 𝕨RAP, Ci are the constraints,
and Z is the minimal polynomial that vanishes on the trace domain H.13

10For details on this step, see Appendix C.1.
11Unlike those references, but as in [Hab22] and [Tea22], we use powers of a single verifier

randomness for constraint batching and a single verifier randomness for FRI batching.
12ethSTARK samples 2 random parameters per constraint, whereas we use a single randomness

parameter here. See affine batching vs. parametric batching in [Hab22].
13In the source code, fvalidity is called the CheckPoly. The Prover splits fvalidity into four low-

degree validity polynomials in order to construct Com(𝕨validity). For details on this step, see Section
C.5.2.
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6. Verifier samples z ∈ 𝕂\(H∪D) the random evaluation point used as a query
for DEEP-ALI.

7. Prover uses z, 𝕨RAP, and 𝕨validity to construct 𝕨BatchedFRI. Rather than a
Merkle commitment for 𝕨BatchedFRI, the Prover sends enough information for
the Verifier to reproduce the asserted values of 𝕨BatchedFRI. This information
is called the DEEPAnswerSequence, and it consists of:

(a) the full tapset of 𝕨RAP at the DEEP query point z,

(b) the evaluation of 𝕨validity at the DEEP query point z, and

(c) the coefficients of column-by-column interpolations of the tapset.14

3.3.3 Subprotocol: Batched FRI

8. Verifier samples αFRI ∈ 𝕂, the randomness used for FRI batching.

9. Both parties apply FRI with auxiliary information auxFRI to check proximity
to the code RS[𝕂,D, ρ] of the function

fFRI(x) =

wRAP+3∑
i=0

αi
FRI · di(x)

where di are the DEEP polynomials defined in Appendix C.5.5. This step
involves a number of additional commitments from the Prover: one for the
batching and one for each commit round of FRI.

3.3.4 Verification

Receipt verification consists of the following logical checks. If any of these checks
fail, the verifier rejects the receipt.

1. Verifier uses the taps, Cset and αconstraints to compute fvalidity(z) and checks for
a mismatch against the purported value of fvalidity(z) on the seal.15

2. Verifier checks the DEEPAnswerSequence for internal consistency, using the
purported column-by-column interpolations to re-compute the purported tapset.

3. For each FRI query j, the Verifier uses the u coefficients and αFRI to compute
fFRI(j) and checks for a mismatch against the purported value of fFRI(j) on
the seal.

4. Verifier checks the internals of each FRI query as described in Appendix C.6.

14These coefficients are called the u coefficients in the Rust code. There is one u polynomial per
trace column, using the taps from that column. For details on this step, see Section C.5.5.

15fvalidity is called the Check Poly in the Rust source.
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3.4 Soundness Analysis in the IOP Model

We present soundness analysis of the IOP protocol using results from [Ben+20] and
[Ben+19]. We use the Fiat-Shamir Heuristic to translate this IOP analysis into con-
clusions about our non-interactive protocol, instantiating the random oracle using
HMAC-SHA-256.

Our soundness analysis follows that of [Sta21], aside from the following differences:

• Randomized preprocessing: Our protocol begins with a randomized pre-
processing step which doesn’t have an analog in [Sta21]. This randomized
preprocessing instantiates constraints for a PLONK-based permutation check
and a PLOOKUP-based range check. We bound the soundness error here
using the Schwartz-Zippel Lemma.

• Constraint Batching: DEEP-ALI includes a step that compresses all the
constraints into a single “Combined Constraint.” As in [Hab22], our protocol
uses powers of a single random field element whereas [Sta21] uses a vector of
field elements. The technique we use is referred to as parametric batching in
[Ben+20] whereas ethSTARK uses affine batching.

• FRI Batching: Similarly, the “batched FRI protocol” begins by using verifier
randomness to compress a number of FRI instances into a single instance. As
in [Hab22], our protocol uses parametric batching for the “FRI batching” step,
whereas [Sta21] uses affine batching.

• Degree reduction of 𝕨validity: The construction in [Ben+18] and [Sta21]
results in a pair of FRI assertions, one for the trace (𝕨control ∪𝕨data ∪𝕨accum)
and one for the “validity polynomial.” As in [Hab22], we split16 the validity
polynomial into 4 low-degree validity polynomials so that we can compress this
into a single FRI assertion. Each leaf of 𝕨validity contains one evaluation for
each of the 4 low-degree validity polynomials. [Hab22] uses the term “segment
polynomials” to refer to this splitting technique.

We bound the soundness of our protocol by

ϵIOP ≤ ϵPLONK + ϵPLOOKUP + ϵDEEP−ALI + ϵFRI

where ϵPLONK, ϵPLOOKUP, ϵDEEP−ALI, and ϵFRI are the soundness error bounds for
our PLOOKUP argument, our DEEP-ALI implementation, and our FRI imple-
mentation, respectively. In the following subsections, we bound ϵPLONK, ϵPLOOKUP,
ϵDEEP−ALI, and ϵFRI, respectively.

3.4.1 Notation for Soundness Analysis

Using θ as the proximity parameter for the FRI low-degree test, the analysis in this
section is proven to hold within the list-decoding radius (θ < 1 −√

ρ) and conjec-
tured to hold up to code capacity (θ < 1−ρ). The proofs for these soundness results
follow from Theorems 1.5 and 8.3 of [Ben+20] and Theorem 6.2 of [Ben+19]. The

16The split function is the same as the one used in the FRI commit rounds. For more details on
this function, see Appendix A.2.3.

11
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conjectured security follows from Conjecture 8.4 in [Ben+20] and Conjecture 2.3 of
[Ben+19]. We include these theorems and conjectures in Appendix D.

In the following subsections, L andm come from the Guruswami-Sudan list-decoding
algorithm, θ = 1− ρ · (1 + 1

2m ) as in [Hab22], and all other variables are defined in
Section 3.2. We point readers to [Hab22] and [Sta21] for more detailed descriptions
of the DEEP-ALI and FRI error bounds, and to [Tea22] for more details on the
error bounds for the permutation arguments.

3.4.2 Error Bound on PLONK and PLOOKUP

The randomized preprocessing phase instantiates accumulators and constraints for
two grand-product arguments. One accumulator is used to prove memory integrity,
and the other is used to prove tap integrity. For each, a simple application of the
Schwartz-Zippel Lemma yields a bound on soundness error. We bound the error on

the first by
e·nσmem ·2h

|𝕂| and the second by
e·nσbytes

·2h

|𝕂| .

3.4.3 Error Bound on DEEP-ALI

In our implementation of DEEP-ALI, the verifier samples a single randomness
αconstraints for combining constraints and then z ∈ 𝕂\(H ∪ D) as a DEEP query.
Each of these random samplings has an associated error term. We write ϵDEEP−ALI =
ϵALI+ϵDEEP, where ϵALI is the soundness error associated with combining constraints
and ϵDEEP is the soundness error associated with the DEEP query point.

We differ from [Sta21] here in that we use powers of a single randomness for com-
bining constraints. Our results here align with [Hab22], aside from the change from
d to d− 1 in the numerator in ϵDEEP.

17 We find

ϵALI =
s · L
𝕂

and

ϵDEEP =
L · (d− 1)((k+ 1) + (k− 1))

|𝕂| − |H| − |D|

3.4.4 Error Bound on FRI

The major results for the soundness of FRI in the list-decoding regime are Theorems
1.5 and 8.3 from [Ben+20]. As above, our soundness results for this part differ from
the presentation in [Ben+20] and [Sta21] in that we use powers of a single random
field element for FRI batching. Again, our results here align with [Hab22] (with a
batch size of wRAP + d− 1). We find

17Although d is defined to be the maximum degree among the constraints, the d term in [Hab22]’s
Theorem 8 is actually counting the number of DEEP validity polynomials (i.e. segment polynomi-
als). Because our selectors (i.e., the indicator flags that manage constraint enforcement) are built
into the constraints themselves, we find the number of DEEP validity polynomials to be one less
than d.

12
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ϵFRI = ((wRAP+d−1)−1

2
)·
(m+ 1

2 )
7

3
√
ρ3

· |D|
2

|𝕂|
+
(2m+ 1) · (|D|+ 1) ·

∑r
i=1 ti√

ρ · |𝕂|
+(1−θ)nqueries

13
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Appendices

A Preliminaries

A.1 Cyclic Domains (Indexing in RISC Zero)

In this section, we define the indexing for an execution trace. RISC Zero’s archi-
tecture is finite-field based, and the indexing is based on powers of ω ∈ 𝔽p.

In order to index a sequence of l elements of 𝔽q, we choose an element of the base
field ω ∈ 𝔽p with multiplicative order l and use the sequence {ω0, ω1, . . . , ωl−1}
as an indexing set. This indexing is cyclical, in the sense that ωz = ωz−l for any
integer z. We call the indexing set a cyclic domain, which we formalize as follows:

Let 𝔽p be a field of prime order, and let 𝔽q be an extension of 𝔽p.

Definition 1 (Domain). We call any non-empty subset D ⊆ 𝔽p a domain.

Definition 2 (Cyclic domain). Given ω ∈ 𝔽p, the set D(ω) = {wi : i ∈ ℕ} is a
domain. If D = D(ω) for some non-zero ω ∈ 𝔽p, then D is said to be a cyclic
domain with counter ω.

Definition 3 (Cycle). Given a cyclic domain D(ω), we call c a cycle if c ∈ D(ω).

We use the term “cycle” here as a step in the computation, related to a “processor
cycle”. This usage is distinct from the concept of a “cyclic domain”.

We note that |D(ω)| is equal to the multiplicative order of ω and therefore di-
vides |𝔽∗

p| = p− 1.

Definition 4 (Cyclic Indexing). Let D(ω) ⊆ 𝔽p be the cyclic domain with counter
ω. We use the powers of ω to define an indexing for D(w):

Index-Cycle : ℕ −→ D(ω)

Index-Cycle : n 7−→ ωn

This cyclic indexing on D(ω) serves as our notion of sequential time throughout
the protocol. We write the kth cycle or the cycle at clocktime k to mean ωk.
We’ll also use sequential language like next cycle and previous cycle based on
this indexing, which we define as follows:

Next-Cycle : D(ω) −→ D(ω)

Next-Cycle : c 7−→ ωc

Prev-Cycle : D(ω) −→D(ω)

Prev-Cycle : c 7−→ω−1c

16
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We emphasize the multiplicative nature of this indexing: we can express the rela-
tionship between the jth cycle, cj and the (j+1)th cycle, cj+1 by writing cj+1 = ωcj .

A.2 Blocks: Indexing, Metrics, and Operations

Informally, a block is a sequence of field elements, indexed by powers of some ω ∈ 𝔽p,
where the length of the sequence is equal to the multiplicative order of ω. In this
section, we articulate the mathematical structure of blocks, including a sequential
indexing, two metrics, and a number of algebraic operations on blocks.

A.2.1 The Structure of a Block

A block u over a cyclic domain D(ω) is a function18 D(ω) → 𝔽q. We define the ith

entry of u, denoted u[i] as follows:

u[i] = u(ωi)

We also define a block over a coset of a cyclic domain βD(ω), where u[i] = u(β ·ωi).
In what follows, we’ll focus on blocks over cyclic domains for simplicity.

Given u[n], we’ll use sequential language like next entry, u[n + 1] and previ-
ous entry, u[n− 1]. The length of u is the number of entries of u, which is equal
to the multiplicative order of ω.

Example
The entry of u that appears n cycles before u(c) can be written as u(w−nc).

A.2.2 Block Distance and Divergence

Let D(ω) ⊆ 𝔽q be the cyclic domain with counter ω, and let u,v be blocks indexed
by ω. We define the distance between blocks (aka Hamming Distance) to be
the number of entries that differ between u and v. Formally,

δ(u,v) = |{ωn ∈ D(ω) : u(ωn) ̸= v(ωn)}|

We say that u is δ-close to v if the distance from u to v is less than or equal to δ.

We define the divergence between u and v to be the proportion of entries that
differ.

∆(u,v) =
δ(u,v)

|D(ω)|
We note that for any divergence and distance are both metrics over the set of
blocks.

Defining Divergence of a Block and a Set

18Intuitively, a “block” is just a sequence of elements of 𝔽q indexed by powers of ω.

17
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Let D(ω) ⊆ 𝔽q be the cyclic domain with counter ω. Let u be a block indexed by
ω, and let V be a set of blocks indexed by ω. We define the distance between u
and V to be the distance between u and the closest block of V .

δ(u, V ) = min
v∈V

δ(u,v)

We define the divergence of u and V as follows:

∆(u, V ) =
δ(u, V )

|D(ω)|

A.2.3 Operations on Blocks

Blocks can be represented as vectors over 𝔽q, and we define addition and scalar
multiplication in the familiar way.

Addition of Blocks
Given blocks u and v, we define the block u+ v:

(u+ v) : D(ω) −→ 𝔽q

(u+ v) : x 7−→ (u(x) + v(x))

Scalar Multiplication of Blocks
Given a block u and α ∈ 𝔽q, we define the block α · u:

α · u : D(ω) −→ 𝔽q

α · u : x 7−→ α · u(x)

With these definitions, we see that the set of blocks indexed by ω forms a vector
space over 𝔽q.

Mixing Blocks We define a method of mixing n blocks into one, using a mix-
ing parameter α. This method is used to mix the constraint polynomials, to mix
the DEEP polynomials, and throughout the FRI protocol.

Let D(ω) ⊆ 𝔽q be a cyclic domain. Let U = u0, ...,um−1 be a sequence of blocks,
each indexed by ω, and let α ∈ 𝔽q be a mixing parameter. We define the mix of
U by α as

mix(U, α) = α0u0 + α1u1 + . . .+ αm−1um−1

We note that a mix of U is a linear combination of ui.

NTTs and iNTTs An iNTT converts an array of evaluations over a domain
D to an array of coefficients of the minimal-degree interpolating polynomial. Given
a block u over cyclic domain D(ω), we write fu = iNTT(u).

18
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An NTT converts an array of coefficients to an array of evaluations over a do-
main D. Given a polynomial f , we write uf = NTT(f,D).

Splitting Blocks We define a method of splitting 1 block of length b · l into b
blocks of length l. This method is used once per FRI commit round (see Appendix
C.6 and as a means of reducing the degree of the validity polynomial (see Appendix
C.5.2).

Given:

1. a block u over D(0) = βD(ω), where ω has order b · l, and

2. a subset D(1) ⊂ D(0) where |D(0)|
|D(1)| = b,

we construct b-split(u) = v0,v1, . . . ,vb−1, as follows:

1. Compute Pu = iNTT (u)

2. Sort the coefficients of Pu to construct Pv0
, . . . , Pvb−1

, such that

Pu(x) =

b−1∑
i=0

xiPvi(x
b)

Succinctly, the coefficient of the degree j term in Pvi is the (bj+i)th coefficient
of Pu.

3. Compute each vi = NTT(Pvi
,D(1))

A.3 Reed Solomon Encoding

In this section, we define Reed Solomon codes and outline their place in the RISC
Zero proof system.

A.3.1 Intuition

A Reed-Solomon encoding is a method of translating a message into a codeword.
Intuitively, you can think of the messages as columns of the execution trace; these
messages are converted to codewords, which are then committed to Merkle trees.

Put succinctly, a Reed Solomon encoding R encodes a message m into a code-
word u by associating m with a polynomial fm = iNTT(m), and evaluating fm
over a larger cyclic domain.19 Formally, messages and codewords are both blocks.

Reed-Solomon encoding is used in STARK protocols as a means of error ampli-
fication, and the rate of the encoding refers to the amount of error amplification.
For an RS encoding of rate 1

4 , distinct codewords will agree at no more than 1
4 of

19or a coset of a cyclic domain
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their entries.20 This means that the Verifier’s probabilistic queries are very likely
to check a discrepancy in the trace.

For zero-knowledge purposes, RISC Zero adds random padding to the trace columns
before implementing Reed-Solomon encoding and evaluates the NTT on a domain
that does not intersect the domain of the message.

A.3.2 Formal Definition of Reed-Solomon Encoding

Let ω ∈ 𝔽q have multiplicative order bl and let D(ωb) ⊆ D(ω) ⊆ 𝔽q. Let B(ωb) be
the set of all blocks over D(ωb) and B(ω) be the set of all blocks over D(ω).

We define21 a Reed-Solomon Encoding, R, where

R : B(ωb) → B(ω)

R : u 7→ u

where the ith entry of u is Pu(ω
i) and Pu(x) is the unique polynomial of degree

l − 1 that agrees with u on D(ωb). We say R has rate 1
b .

Given R : B(ωb) → B(ω), we say a block v ∈ B(ω) is a codeword if there exists
u ∈ B(wb) such that R(u) = v. We write R(ω) to refer to the set of blocks over
D(ω) that are codewords with respect to R. Given R, the code is the collection of
all such codewords.

A.4 Block Operations on RS Codes

In this section, we present various results about block operations in relation to block
validity and block proximity22.

A.4.1 Motivation

Fundamentally, most of the protocols for the proof system described here work by
operating on Reed-Solomon codes, combining and transforming them in various
ways.

This transformations in turn modify the polynomials they RS codes represent. But
because of the redundancy introduced by the error correcting code, once the Prover
cryptographically commits to the codes before and after an operations in some way,
we can verify the correctness of the operation by randomly spot checking.

Generally, we will say that if the result of the operations is a (mostly) correct

20The core insight of Reed-Solomon codes is that two degree n polynomials will agree at no
more than n locations.

21For simplicity, we state the definitions here in terms of cyclic domains. We note that these
definitions generalize easily to cosets of cyclic domains.

22Proximity in this context refers to the distance between a given block and the nearest codeword.
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codeword, and the spot checks succeed with high likelihood, that input was (very
likely) a (mostly) correct codeword as well, and that the operation was done cor-
rectly across the whole code, in the sense that if we corrected both codes, we would
find the entire process was error free. Of course the details here matter a great deal,
as do all of the precise probabilities and divergences.

We often care that the divergence of a given block from the set of RS codewords is
below some critical distance δ. We say such a block is δ-close to the code.

In the next sub-sections we will introduce the the core building blocks we will use
for the protocols, and provide proofs of their correctness (directly or via reference).

In all cases below, we presume δ is within the unique decode range. The key
concepts are (informally):

Mixing If we randomly mix codewords, and the output is δ close, it is very likely
that all of inputs were also δ close.

Splitting We can split a codeword of length bl into b smaller codewords of length
l, and can evaluate the split is correct by spot checking, so long as the outputs
are all δ close.

Evaluating Given a codeword, we can verify the evaluation of the underlying mes-
sage polynomial at an arbitrary field element by using a quotient to compute
a new codeword, and then spot checking the two codewords for the implied
algebraic relationship (so long as both are δ close).

One can immediately see that by applying splitting and mixing recursively, one
could check an arbitrarily large RS-code was very likely δ close in O(log(N)) steps,
N being the length of the code. This is in fact how the FRI protocol works.

A.4.2 Operations on RS Codewords

For proving completeness of the protocol, we need to show that if we start with
RS codewords and perform algebraic block operations, the results will also be code-
words. In this section, we show that the set of codewords, R(ω) is closed under
block addition and scalar multiplication, mixing, and splitting.

Let u,v be codewords and let α ∈ 𝔽q. Since u and v are codewords, we can
associate each of them with a low-degree polynomial: Pu and Pv.

Addition
Block addition is defined as pointwise addition, so u+ v can be expressed as Pu+v

where Pu+v is the polynomial formed via point-wise addition of Pu and Pv.

Pu+v(x) = Pu(x) + Pv(x)

Given that u and v are codewords, we conclude that u+v is also a codeword since
deg(Pu+v) ≤ max (deg(Pu),deg(Pv)).
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Scalar Multiplication
Similarly, αu can be expressed as Pαu, where

Pαu(x) = αPu(x)

Given that u is a codeword, we conclude that αu is a codeword since deg(Pαu) =
deg(Pu).

Mix
It follows immediately that the mix of codewords is also a codeword, since mix is
just a linear combination of blocks.

Split
It is similarly immediate that if u is a codeword on D(ω), then each vi in b-split(u)
is a codeword on D(ωb). This follows from the definition of split, since each vi is
constructed as the evaluation of a low-degree polynomial Pvi

.

Eval
The eval function is used to verify the evaluation of an RS-code at an arbitrary
field element (the DEEP query point, in particular). eval is defined as follows:

Definition 5. Let

• D be a domain over field 𝔽q

• u be a codeword over D

• e = ((x1, y1), ..., (xm, ym)) be a sequence of m pairs (𝔽q × 𝔽q), with all xi

unique.

• b = interpolate(e); i.e. b is the minimum-degree polynomial over 𝔽q such that
b(xi) = yi for i = 1, . . . ,m.

We define a function eval : (𝔽D
q , (𝔽q × 𝔽q)

n) → 𝔽D
q

u′ = eval(u, e)

where

u′(z) =
u(z)− b(z)∏m
i=1(z − xi)

The Prover’s construction of the DEEPAnswerSequence involves evaluations of wit-
ness polynomials that aren’t part of the associated Merkle commitments. The eval
function allows the Verifier to validate the DEEPAnswerSequence without relying on
Merkle branches. The intuition here is that if b(z) is not equal to u(z), then u′ will
not be a codeword.

A.4.3 Operations and Block Proximity

Throughout the protocol, the Prover uses the mix function in order to consoli-
date multiple arguments about block proximity to a single argument about block

22
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proximity. For proving soundness of the protocol, we need to show that if the block
associated with the final FRI polynomial fr is δ-close to a codeword, then the orig-
inal trace blocks and validity blocks are also δ-close to a codeword.

The major theorem we rely on for this argument is presented in Theorem 1.5 of
Eli Ben-Sasson et al, 2020. Put succinctly, the premise is that if U is a sequence
of blocks and some mix of U gives a result that is δ-close to R(ω), then it’s ex-
tremely likely that each of the blocks of U are also δ-close to R(ω). Moreover, the
δ-closeness of the mix(U) allows us to conclude that the locations-of-agreement in
the pre-mixed blocks are correlated.

This correlation is non-trivial and quite useful: typically if a and b are blocks that
are each δ-close to R(ω), a+ b will not be δ-close. But if a and b have correlated
agreement, we can conclude that:

δ(a+ b,R(ω)) ≤ max[δ(a,R(ω)), δ(b,R(ω))]

Without correlated agreement, we’d have the weaker

δ(a+ b,R(ω)) ≤ δ(a,R(ω)) + δ(b,R(ω))

Correlated Agreement of Mixed Codes
Theorem 3 allows the Verifier to conclude that the proximity of u to V implies the
proximity of each ui as well.

Restated informally, Theorem 3 basically says: If we randomly mix together some
set of blocks, and the result is δ-close to a codeword more than a small amount ϵ
of the time, then there is a large subset of D in which the elements are in fact all
parts of a codeword. Of course, this means that in fact the original blocks we mixed
together are in fact also δ close. We capture this simplified understanding below

Corollary 1 (Mixing). Let V, u, δ and ϵ be as defined in Theorem 3.
If Prα∈𝔽q

[mix(u, α) is δ-close] > ϵ, then all u ∈ u are also δ-close.

Proof. By Theorem 3, there exists a set D′ such that for each ui, ui(x) = vi(x) for
all x in D′, and vi ∈ V . Since ui and vi agree on all points of D′, and |D′|/|D| ≥
1− δ, we have ∆(ui,vi) ≤ δ, and thus ∆(ui,V) ≤ δ.

Split and δ-closeness
Haven’t thought about this yet.

Evaluate and δ-closeness
The following theorem shows that spot-checking the output of eval is sufficient to
ensure a unique decoding of the input.

Theorem 1. Let

• V = RS[𝔽q,D, k], be an RS code with rate ρ and block size n.
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• u and u′ be blocks in 𝔽D
q which are δ-close to V , δ < 1−ρ

2

• e = ((x1, y1), ..., (xm, ym)) be a sequence of m pairs (𝔽q × 𝔽q), with all xi

unique.

• b = interpolate(e)

If

Pr
z∈D

[u(z) = u′(z)

m∏
i=1

(z − xi) + b(z)] ≥ k +m

n
(1)

Then

1. The polynomial u can be corrected uniquely to some v ∈ V

2. For all 0 < i < n, yi = v(xi)

Proof. Claim 1 follows directly from the requirements on u and Theorem 2. Given
the requirement of u′, it also has a unique decoding via Theorem 2, which we call
v′.

If v = v′ ∏(z − xi) + b, then it is clear that v meets the requirements of claim
2, since v′ ∏(z− xi) will be 0 at all xi, and thus adding b will thus satisfy claim 2.

On the other hand, if v ̸= v′ ∏(z−xi)+b, then the difference d = v− (v′ ∏(z−
xi) + b) is a non-zero polynomial of degree at most k + n− 1. Thus it can have at
most k+m−1 zeros. But this would contradict equation 1, since it implies at least
k +m zeros over the n element of D.

A.5 Constraints and Taps

A.5.1 Constraints

Checking that an execution trace satisfies a particular RISC-V rule involves checking
some arithmetic relationship involving multiple blocks across multiple clock cycles.

Given a particular rule of RISC-V that we want to check at clock cycle c, we
can plug the associated taps into some equation that will return zero if the trace is
valid.23.

In other words, we can write a rule-checking function, r, whose inputs are taps of the
trace, such that whenT is a valid trace over cyclic domainD(ω), r(t1(c), ...tk(c)) = 0
for all c ∈ D(ω).

This gives a construction of a single-input constraint function C:

C : D(ω) → 𝔽q

C : c 7→ r(t1(c), ..., tk(c))

By writing the taps in terms of trace polynomials, the Prover can express C as a
polynomial. Putting this all together, we construct constraint polynomials24, C,

23The control blocks allow for a construction of rule-checking functions that are time-symmetric:
by using control blocks to turn on and off the enforcement of the rules, we construct rule-checking
functions that evaluate to 0 at each cycle associated with a valid trace.

24The key feature of the Constraint Polynomials is that they have roots at each c ∈ D(ω4).
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as follows:
C(c) = r(t1, ..., tn)

and each ti is a polynomial tap of the trace. In practice, we have one constraint
polynomial, ci, per rule-checking function, ri.

A.5.2 Trace Taps and Polynomial Taps

Trace taps offer a way to express references across multiple blocks and across mul-
tiple cycles. Concretely, the tap (i, j) at c is the entry in ui that appears j clock
cycles after c. Concretely, the tap (1,2) at ω3 is u1(ω

(3+2)).

Polynomial taps ti = (ai, bi) are a natural extension taps. Whereas a tap points to
an entry in a trace, a polynomial tap points to an evaluation of a trace polynomial.
Formally, the polynomial tap ti = (ai, bi) is defined as follows:

ti(c) = Pai(w
bic)

where Pai
is the trace polynomial specified by the ith tap.

Formal Definitions

Given a trace T = u1,u2, ...,un over cyclic domain D(ω), we define a tap t = (i, j)
as a function

t : D(ω) → 𝔽q

t : c 7→ ui(ω
jc)

Given a collection of Trace Polynomials P1, P2, . . . , Pn, we define a polynomial
tap t = (i, j) as a function

t : 𝔽q → 𝔽q

t : c 7→ Pi(ω
jc)

B Merkle Tree Structure

In this section, we describe the structure of the Merkle commitments and Merkle
proofs.

Merkle Leaves and Trees

Throughout the protocol, each Merkle leaf is a vector in 𝕂, constructed by evalu-
ating a sequence of polynomials at a single point in D.

These polynomials are organized into polyGroups, where one Merkle tree is con-
structed per polyGroup.
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The Prover generates a Merkle root associated with each of the following poly-
Groups:

1. Control polyGroup

2. Data polyGroup

3. accum polyGroup

4. Validity polyGroup

5. FRI polyGroup (1 per round of FRI)

Merkle Branch Structure

Given that we’re doing lots of queries from the same Merkle Tree, these queries are
expected to have quite a bit of overlap close to the root. To minimize computa-
tion, rather than checking all the way to the root, we choose a cut-off point called
top layer.

We store that entire layer, and for each query, we check our Merkle branches from
leaf to top layer. The paths from top layer to the Merkle root only need to be
checked once.

More concretely, we initialize a vector top that will hold the top of the Merkle Tree.
We initialize a vector top of size 2 * top size.25 We populate the second half of
this vector with digests from iop.read-digests. Then, for i in (1..top size),
in reverse order, we compute
top[i] = hash(top[2*i], top[2*i +1]).

We end with the top of the Merkle tree stored in top, with the top[0] untouched
and the Merkle Root in top[1].

top[1]

top[2]

top[4] top[5]

top[3]

top[6] top[7]

Now, to check the validity of a branch that passes through top[4], this optimiza-
tion allows us to check the root matches top[1] and that the branch from leaf to
top[4] is valid.

25You can think of top-size as the size of top-layer.
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C Protocol Details

A concise description of the IOP protocol is presented in Section 3.3. This section
presents a more detailed explanation of each step. In this section, we use the
notation Mlabel as shorthand for Com(𝕨label).

C.1 Constructing 𝕨control and 𝕨data

As in [Ben+18], the trace columns are encoded into trace blocks using Reed-Solomon
encoding [RS60]. 𝕨control and𝕨data correspond to the control blocks and data blocks,
respectively, as explained in Section 2.1.

The trace columns (mi) are encoded as trace blocks26 (ui) as follows:

1. Each (padded) column, mi is treated as a Reed-Solomon[RS60] “message.”
Each message is used to construct a low-degree polynomial, Pui

(x) using an
iNTT (over D(ω4), as defined in Appendix A.1).

2. The resulting polynomial Pui
(x) is then evaluated over βD(ω) using an NTT,

where βD(ω) is a multiplicative coset27 of D(ω):

βD(ω) = {βx ∈ 𝔽q : x ∈ D(ω)}

The resulting array of evaluations is called a block. Succinctly, we define the
ith trace block as follows: ui = Pui

∣∣
βD(ω)

.

We’ll sometimes write this succinctly as ui = NTT(iNTT(mi)). Note that ui ̸= mi

since the domain of the NTT and the iNTT differ.

C.2 Constructing Com(𝕨control) and Com(𝕨data)

The Prover constructs two Merkle Trees, a Control Tree and a Data Tree, using
the trace blocks (i.e., the evaluations of the Trace Polynomials on βD(ω)) as the
leaves. Each leaf’s address corresponds to a point of the coset βD(ω), and the
contents of the leaf at address z consist of the trace polynomials evaluated at z. As
articulated in Appendix B, the Prover computes the Merkle commitment for each
tree, Com(𝕨control) = Mcontrol and Com(𝕨data) = Mdata, and writes them to the seal.

C.3 Randomness for Accumulators

In the interactive version of the protocol, the Verifier sends some randomly chosen
Accumulation Parameters, after receiving the commitments Mcontrol and MD. In
the non-interactive version, we generate the Accumulation Parameters by running
a SHA-2 CRNG on Mcontrol||Mdata.

28

26We define blocks in Appendix A.2.1 and Reed-Solomon encoding in Appendix A.3.
27Note that while most discussions of NTTs and iNTTs occur over a multiplicative subgroup of

a finite field, RISC Zero’s NTT and iNTT implementation works over a coset of a multiplicative
subgroup as well. We write NTTs and iNTTs as two-argument functions that receive (1) an array
over an (implied) finite field and (2) a cyclic domain or a coset of a cyclic domain. See Appendix
A.2.3 for more details.

28We use || to denote concatenation.
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C.4 Constructing Com(𝕨accum)

As in [GPR21] and [Azt20], we instantiate our system as a randomized AIR with
preprocessing (RAP). The random accumulation parameter defined in Appendix C.3
is used (along with 𝕨data) to generate accumulator polynomials. The evaluations of
these accumulator polynomials are called 𝕨accum; the resulting Merkle cap, Maccum,
is commited to the seal. The seal now reads

Mcontrol||Mdata||Maccum

C.5 DEEP-ALI: Constructing Com(𝕨validity) and the DEEPAnswerSequence

The DEEP-ALI portion of the protocol includes two elements of randomness and
two Prover commitments.

C.5.1 Randomness for Algebraic Linking

In the interactive version of the protocol, the Verifier sends a randomly chosen
Mixing Parameter, αconstraints, after receiving the Merkle root MP . In the non-
interactive version, we generate the mixing parameter by running a SHA-2 CRNG
on Mcontrol||Mdata||Maccum.

C.5.2 Constructing Com(𝕨validity)

The Prover first generates a number of Constraint Blocks, ci using time-symmetric
rule-checking functions and the Trace Blocks29. Then, these ci are mixed together
using the Constraint Mixing Parameter αconstraints to form the Mixed Constraint
Block, C:

C = mixαconstraints(C1, ...Cv) = αconstraintsC1 + ...+ αn
constraintsCv

We note that C is a uni-variate polynomial of degree at most 5|D(ω)|, and that
C(c) = 0 for each c ∈ D(ω). The Prover divides C by a publicly known Zeros
Block30 to form the High Degree Validity Block. To wrap up the construction,
the Prover splits the High Degree Validity Block into 4 Low Degree Validity
Blocks.31, then commits those blocks to a new Merkle Tree (the Validity Tree) and
appends the root of the tree, Mvalidity, to the seal. At this stage, the seal reads as
follows:

Mcontrol||Mdata||Maccum||Mvalidity

29We use “trace block” to refer to NTT(Pui ,D(ω)). Note that the ith trace block has 4x the
length of trace column ui

30The Zeros Block consists of evaluations of the Zeros Polynomial over βD(ω).
31We abuse terminology here in referring to the “degree” of a block. We write “low degree block”

to mean that the polynomial associated with the block has degree less than or equal to the degree
of the trace polynomials, n (which is equal to the length of a column of the trace). Enforcing
RISC-V rules uses relations up to degree 5, which means the degree of the mixed constraint block
is 5n. After dividing by the zeros block, the High Degree Validity Block has degree 4n, and the
Low Degree Validity Polynomials have degree n.
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C.5.3 Randomness for DEEP

In the interactive version of the protocol, the Verifier sends a randomly chosen test
point, z ∈ 𝔽q, after receiving the Merkle root Mv. In the non-interactive version,
we generate z by running a SHA-2 CRNG on Mcontrol||Mdata||Maccum||Mvalidity.

C.5.4 Intuition for DEEP technique

The Prover will send the DEEPAnswerSequence, which allows the Verifier to enforce
to check the C(z) = Z(z)V (z) at the DEEP Test point, z.

Since z is not in the Merkle Tree commitments for the Trace Polynomials or the
Validity Polynomials, the Prover sends additional information in order enforce that
the values provided agree with the earlier Merkle commitments. This information
is called the DEEPAnswerSequence.

The core of the DEEP technique is the insight that if f(z) = a, then x − z di-
vides f(x) − a as polynomials. Moreover, if f(z1) = a1 and f(z2) = a2, then the
polynomial (x − z1)(x − z2) divides f(x) − f(x), where f is the interpolation of
(z1, a1) and (z2, a2).

C.5.5 Constructing the DEEPAnswerSequence

The DEEPAnswerSequence consists of the tapset, the evaluation of V at z, and the
column-by-column interpolations of the tapset.

We define a DEEP polynomial for each Trace Polynomial Pi and each low-degree
validity polynomial vj . Given trace polynomial Pi, we define the DEEP polynomial
di as:

di(x) =
Pi(x)− Pi(x)

(x− x1) · · · (x− xn)

where (x1, Pi(x1)), . . . , (xn, Pi(xn)) are the taps32 of Pi at z and Pi(x) is the poly-
nomial interpolation of those taps.33

We can define di more succinctly using the eval function defined in Appendix
A.4.2:

di = eval(Pi, taps)

DEEP polynomials for v′j are defined analogously and denoted by dwRAP+j where
wRAP is the total number of trace polynomials. Since there are always 4 valid-
ity polynomials in our use cases, we end up with 4 DEEP validity polynomials
dwRAP

, . . . , dwRAP+3.

The Prover interpolates each Pi and sends the coefficients to the Verifier, unen-
crypted. The seal now reads:

Mcontrol||Mdata||Maccum||Mvalidity||DEEPAnswerSequence
32For details on taps, see Appendix A.5.2.
33In the Rust source, the coefficients of Pi are referred to as “u coefficients.”
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The Verifier can now check34 that V (z)C(z) = Z(z).

C.6 The Batched FRI Protocol

RISC Zero uses the batched FRI protocol as described in Section 8.2 of the Prox-
imity Gaps for Reed-Solomon Codes paper.

First, the DEEP blocks are batched and then re-indexed to form a single block
f (0). At this stage, the Prover has reduced the assertion of computational integrity
to an assertion that deg(f (0)) is less than some n.

Then, over r recursive steps, the Prover reduces the assertion that deg(f (0)) < n to
an assertion that deg(f (r)) < 256.

Batching

The Verifier uses an HMAC to choose a FRI batching parameter, αFRI. The Prover
uses αFRI to mix d0, . . . , dwRAP+3. The result of this mixing is denoted d(x) :

d(x) = mixαFRI
(d0, . . . , dwRAP+3) =

wRAP+3∑
i=0

αi
FRIdi(x)

Re-indexing

Rather than evaluating d over the coset βD(ω), the Prover first defines f (0) as a
re-indexing35 of d:

f (0)(x) = d(β−1x)

Now, the Prover evaluates f (0) over D(ω) (which yields the same array as evaluating
d over βD(ω)). The Prover commits the evaluations to a Merkle tree and adds the
associated Merkle root Mf(0) to the seal.

The seal now reads:

Mcontrol||Mdata||Maccum||Mvalidity||DEEPAnswerSequence||Mf(0)

FRI Commit Rounds

Over the course of r rounds of FRI, the Prover constructs f (1), . . . , f (r), committing
a Merkle root Mf(i) for each.

RISC Zero uses a split factor of 16 throughout FRI, but we write the split fac-
tor as l for generality.36. Each Merkle tree Mf(i) is constructed by evaluating f (i)

34The Verifier computes the LHS by evaluating the DEEP validity polynomials at z4 and using
those values to compute V (z). The Verifier computes the RHS by evaluating di(z) for each trace
polynomial and uses those values to compute C(z) and then V (z).

35This re-indexing serves to simplify our application of the FRI protocol from “coset FRI” to
“subgroup FRI.”

36Ben-Sasson, et. al., write the split factor as l(i) to allow for the possibility of varying the split
factor throughout the protocol.
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over D(i) = D(ωli).37

For i = 1, . . . , r, each f (i) is constructed by computing mixα(i)(split(f (i−1))). The
functions mix and split are defined in Appendix A.2, and the mixing parameters
α(i) are verifier-supplied38 random parameters.

The Prover constructs a Merkle tree and commits a root for each f (1), . . . , f (r−1).
For f (0), the Prover interpolates the result and sends the coefficients. The seal now
reads:

Mcontrol||Mdata||Maccum||Mvalidity||Coefficients-for-DEEP||Mf(0) ||Mf(1) || . . . ||Coefficients-for-f (r)

FRI Queries

After the FRI commit rounds, the Verifier makes a number of queries to check the
integrity of the FRI commitments.

For a single query, the Verifier specifies an element g(0) ∈ D(0), which then induces:

1. a choice of g(i) ∈ D(i) for each i = 1, . . . , r. Specifically, g(i) = (g(i−1))l.

2. a coset C(i) for each i = 0, . . . , r− 1. Specifically, C(i) ⊂ D(i) contains the lth

roots of gi+1 ∈ D(i+1).

The Prover returns f (i)|C(i) for each i = 0, . . . , r − 1 and f (r)(g(r)).

The verify checks:

1. The FRI batching commitment matches against the DEEP polynomials at
g(0).

2. The split and mix operations match from round-to-round. This operation
can be checked locally, using only the values revealed for the query. In par-
ticular, the value of f (i+1)(g(i+1)) can be computed using the values f (i)|C(i) .

D Key Theorems for Soundness Analysis

We state the key theorems for soundness analysis here.

Theorem 2 (Reed-Solomon unique decoding). Given an RS code, RS[𝔽q,D, k] of
block length n, rate ρ, and a block u : D → 𝔽q if

∆(u, V ) < (1− ρ)/2

then there exists a unique closest u′ ∈ V , ∆(u,u′) = ∆(u, V ), and such u′ can be
found in polynomial time.

37Note that D(r) ⊂ . . . ⊂ D(0) and that
|D(i)|

|D(i+1)|
= l.

38Generated using the Fiat-Shamir Heuristic
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Correlated Agreement

Theorem 3 (Correlated agreement over parameterized curves).

Let ω ∈ 𝔽q have multiplicative order bl, and let R : D(ωb) → D(ω) be a
Reed-Solomon encoding. Let V be the collection of codewords of R.
Let U = u0,u1, . . . ,um−1 be a sequence of blocks over D(ωb).
Let δ be a distance less than unique decoding radius: δ ∈ [0, 1−ρ

2 )

Let ϵ be a probability defined as ϵ = mbl
q

If Prα∈𝔽q
[∆(mix(U, α),V) ≤ δ] > ϵ, then there exists a D′ ⊂ D(ω)

and v0,v1, ...,vn ∈ V satisfying

Density: |D′|/|D(ω)| ≥ 1− δ

Agreement: For all i ∈ {0, 1, ..., l}, and x ∈ D′

ui(x) = vi(x)

An alternative statement of this theorem is given in [Hab22]:

Theorem 4. (Correlated Agreement Theorem) Let RSk = RSk[F,D] be the Reed-
Solomon code over a finite field F with defining set D ⊆ F and rate ρ = k

|D| . Given

a proximity parameter θ ∈ (0, 1−√
ρ) and words f0, f1, . . . , fN−1 ∈ FD for which

|{λ ∈ F : δ(f0 + λ · f1 + . . .+ λN−1 · fN−1,RSk) ≤ θ}|
|F |

> ϵ

where ϵ is as in (1) and (2) below. Then there exist polynomials p0(X), p1(X), . . . , pN−1(X)

belonging to RSk, and a set A ⊆ D of density |A|
|D| ≥ 1 − θ on which f0, . . . , fN−1

jointly coincide with p0, . . . , pN−1, respectively. In particular,

δ(f0 + λ · f1 + . . .+ λN−1 · fN−1,RSk) ≤ θ

for every λ ∈ F .

Quoting [Hab22]: Depending on the decoding regime, the following values for ϵ are
obtained by [Ben+20]:

1. Unique decoding regime.
For θ ∈

(
0, 1−ρ

2

)
, the theorem above holds with

ϵ = (N − 1) · |D|
|F |

2. List decoding regime.
For θ ∈

(
1−ρ
2 , 1−√

ρ
)
, the theorem above holds with

ϵ = (N − 1) · k2

|F | ·min
(

1
m , 1

10

)7 ≈ (N − 1) ·m7 · ρ− 3
2 · |D|2

|F |
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Theorem 5. (Batched FRI soundness error) Suppose that qi ∈ FD, i = 0, . . . , L−1,
is a batch of functions given by their domain evaluation oracles. If an adversary
passes batched FRI for RSk[F,D] and proximity parameter θ = 1−√

ρ·(1+ 1
2m ),m ≥

3, with a probability larger than

ϵ = (L− 1

2
) ·

(m+ 1
2 )

7

3
√
ρ3

· |D|
2

|F |
+

(2m+ 1) · (|D|+ 1) ·
∑r

i=1 ai√
ρ · |F |

+ (1− θ)s

then the functions qi ∈ FD, i = 0, . . . , L − 1, have correlated agreement with
RSk[D,F ] on a set of density of at least α > (1 + 1

2m ) · √ρ.

RS Codes over Subfields
One important performance enhancement used in RISC Zero’s protocol involves the
use of a subfield 𝔽p of a larger field 𝔽q = 𝔽pn for some of the protocol. The idea
is that many of the RS codes will use the smaller subfield to reduce the computa-
tional burden, but will interpreted later as RS codes in the full field. Of course it is
immediately clear that for ω ∈ 𝔽p, RS[𝔽p,D(w), k] ⊆ RS[𝔽pn ,D(w), k]. That is, all
elements of the RS code of the small field are elements of the RS code of the larger
field. However, we also want to prove that any block from the larger field’s code
(or even a block close to a codeword), for which most of the elements are in 𝔽p, is
in fact close to the smaller fields code.

Formally, we have:

Theorem 6 (RS Subfield Theorem). Let

• Vp = RS[𝔽p,D, k], be an RS code with rate ρ and block size n.

• q = pm

• Vq = RS[𝔽q,D, k], be an RS code with rate ρ and block size n.

• u ∈ 𝔽D
q be a block over which is δ-close to Vq, δ < 1−ρ

2

• u′ ∈ 𝔽D
p be the block which a projection of u into 𝔽p, via the rule that: u′(x) =

u(x) if u(x) ∈ 𝔽p, and u′(x) = 0 otherwise.

If
Pr
x∈D

[u(x) /∈ 𝔽p] < δ (2)

Then u′ is δ close to Vp.

Proof. Given that fact the u is within the unique decoding radius, there is some
unique decoding v ∈ Vq, such that ∆(v, u) < δ. Therefore at most δ faction of the
elements are not in v, and we also have via 2 that at most δ factions of elements
are not in 𝔽p. Thus at least b > 1− 2δ elements must be both in v and in 𝔽p.

Since δ < 1−ρ
2 , we have b > ρ, or counting the number of elements rather than

the fraction B = bn > ρn > k. Thus there are k element in v which are in 𝔽p. But
via interpolation over the field 𝔽p, we can find coefficients in 𝔽p, and therefore all
all values in v are in 𝔽p, and thus v ∈ Vp, and thus u′ is δ close to Vp.
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